Optimal control of gaze shifts.
نویسندگان
چکیده
To explore the visible world, human beings and other primates often rely on gaze shifts. These are coordinated movements of the eyes and head characterized by stereotypical metrics and kinematics. It is possible to determine the rules that the effectors must obey to execute them rapidly and accurately and the neural commands needed to implement these rules with the help of optimal control theory. In this study, we demonstrate that head-fixed saccades and head-free gaze shifts obey a simple physical principle, "the minimum effort rule." By direct comparison with existing models of the neural control of gaze shifts, we conclude that the neural circuitry that implements the minimum effort rule is one that uses inhibitory cross talk between independent eye and head controllers.
منابع مشابه
Vestibular and cerebellar contribution to gaze optimality.
Patients with chronic bilateral vestibular loss have large gaze variability and experience disturbing oscillopsia, which impacts physical and social functioning, and quality of life. Gaze variability and oscillopsia in these patients are attributed to a deficient vestibulo-ocular reflex, i.e. impaired online feedback motor control. Here, we assessed whether the lack of vestibular input also aff...
متن کاملHead-free gaze shifts provide further insights into the role of the medial cerebellum in the control of primate saccadic eye movements.
This study examines how signals generated in the oculomotor cerebellum could be involved in the control of gaze shifts, which rapidly redirect the eyes from one object to another. Neurons in the caudal fastigial nucleus (cFN), the output of the oculomotor cerebellum, discharged when monkeys made horizontal head-unrestrained gaze shifts, composed of an eye saccade and a head movement. Eighty-sev...
متن کاملHead-unrestrained gaze shifts after muscimol injection in the caudal fastigial nucleus of the monkey.
The effects of unilateral cFN inactivation on horizontal and vertical gaze shifts generated from a central target toward peripheral ones were tested in two head unrestrained monkeys. After muscimol injection, the eye component was hypermetric during ipsilesional gaze shifts, hypometric during contralesional ones and deviated toward the injected side during vertical gaze shifts. The ipsilesional...
متن کاملBrain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades execut...
متن کاملEffect of reversible inactivation of superior colliculus on head movements.
Because of limitations in the oculomotor range, many gaze shifts must be accomplished using coordinated movements of the eyes and head. Stimulation and recording data have implicated the primate superior colliculus (SC) in the control of these gaze shifts. The precise role of this structure in head movement control, however, is not known. The present study uses reversible inactivation to gain i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 24 شماره
صفحات -
تاریخ انتشار 2009